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ABSTRACT 

This project presents an effort to establish theories and techniques of modeling, 

analyzing and controlling information dynamics and emergent behavior of heterogeneous-agent 

systems and demonstrate the application of these theories and techniques to heterogeneous- 

agent systems making up information supply networks. A heterogeneous-agent system is a 

Complex Adaptive System (CAS) involving a large collection of semi-autonomous agents. 

According to Complexity Theory for CAS, the aggregate system behavior of heterogeneous 

agents and their inter-connections emerges from the evolving local interactions of agents in a 

dynamically changing environment. A CAS best organizes from the bottom up through self- 

organization. We base the modeling of heterogeneous-agent systems on the innovative 

integration of three modeling paradigms: agent-based modeling, control-theoretic modeling, and 

stochastic discrete-event modeling. The model represents the physical, information and 

knowledge elements of each agent, which includes: fitness function, tagging, building blocks, 

internal model, dynamic resources and processes under the control of the agent, as well as the 

interaction of the agent with other agents and the environment. The analysis of heterogeneous- 

agent systems and their emergent behavior is based on the innovative application of non-linear 

time-series analysis techniques from chaos theory and nonlinear dynamical systems theory as 

well as multivariate statistical techniques to detect emergent states and temporal patterns. We 

base the control of heterogeneous-agent systems on the innovative bottom-up self-organization 

approach to coping with desirable and undesirable emergent states of heterogeneous-agent 

systems for system stability and robustness. This project investigates the emergent behavior of 

information supply network systems (e.g., military information supply networks for information 

distribution and fusion in command and control - C2, and commercial information supply 

networks for e-commerce). In this project, we build and use the simulation model of an 

information supply network system to collect behavioral data of the system under experimental 

conditions involving various inter-agent control methods and different network environments. This 

project also develops and applies analytical techniques to the simulation data for understanding 
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emergent system behavior under various conditions and gaining insights into system design and 

control. The simulation experiments look into the following factors: 

1) Inter-agent control methods for different degrees of agent autonomy and agent 

coordination, such as sharing of state information among agents, conformance to a 

common fitness function by agents, enforcement of the same internal model among 

agents and so forth, and 

2) System structures determined by types and density of inter-connections among agents 

through material, information and knowledge flows. 
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INTRODUCTION 

A supply network enterprise is a network of organizations coupled for the purpose of 

providing value to customers. A supply network enterprise consists of a focal organization and the 

-network of firms that transact with it in the form of physical goods and services as well as 

information. These connections are then extended iteratively (i.e., connecting the supplier's 

suppliers and customers and the customer's customers and other suppliers). An enterprise 

potentially transcends multiple industries and markets. Each organization is an agent acting on its 

own self-interest, but subject to constraints from its contracting relationships with other agents 

and from the environment. Agents are heterogeneous in their role and other features in a supply 

network enterprise. A complex network of suppliers, manufacturers, distributors, transporters, 

retailers, and customers - a supply network enterprise - is common. The complexity of 

interrelationships arises from not only material flows but also information flows throughout the 

supply network enterprise. Little exists now in understanding the emergent behavior of supply 

network enterprises, designing their structures, and optimizing their operation. 

A supply network enterprise is a heterogeneous-agent system - a Complex Adaptive 

System (CAS) - involving a large collection of semi-autonomous agents that may play different 

roles in the system. According to Complexity Theory for CAS, the aggregate system behavior of 

heterogeneous agents and their inter-connections emerges form the evolving, local interactions of 

agents in a dynamically changing environment. 

Advances in information technology have led us to a new era of business organization 

and market structure. Information technology gives a focal organization in a supply network 

enterprise an unprecedented capability to communicate, coordinate, and even control its 

suppliers, distributors, transporters, retailers, customers and itself. For example, the focal 

organization may attempt to improve the delivery time, product quality and cost by obtaining the 

information of inventory and process quality from suppliers, the information of product sales from 

retailers, and even coordinating and controlling the business process throughout the supply 

network via Enterprise Resource Planning (ERP) software. The focal organization can even 



interact with customers directly to provide products and services and in turn, consumers can 

benefit by obtaining objective comparative information about their desired purchase. 

Despite potential changes that can be introduced by information technology, it is still not 

clear what kinds of changes will produce the desirable emergent behavior of a supply network 

enterprise, and thus should be adopted. For example, the following questions remain to be 

answered: 

• Should a focal organization exert tight control over its suppliers by monitoring 

and controlling the product development and production process of its suppliers 

and the inventory management process of its distributors, which is made possible 

by information technology, or should the focal organization leave a high degree 

of autonomy to its suppliers and distributors for innovation and flexibility? 

• What kind of suppliers should a focal organization choose to work with, a few 

suppliers or a large number of suppliers, suppliers which commit all of their 

resources to support the focal organization for a long period of time, or suppliers 

which have more freedom to remain or leave the supply network enterprise 

dynamically? 

• How should a focal organization deal with other agents in the supply network 

enterprise when facing an unstable market with many changes, versus a stable 

market? 

• Which inter-agent control methods and which supply network structures, under 

which nature of internal dynamics and eternal changes, leads to the desirable 

emergent behavior of a supply network enterprise? 

The long-term goal of this research work is to establish theories and techniques of 

modeling, analyzing and controlling heterogeneous-agent systems and their emergent 

behavior, and to demonstrate the application of these theories and techniques to supply 

network enterprises in e-business. The work on the simulation modeling of 

heterogeneous-agent systems will focus on a coherent integration of three modeling 

paradigms: agent-based modeling, control-theoretic modeling and stochastic process 



modeling, to represent essential features of agents such as the role, internal model, 

building blocks, fitness function, physical and information flows, aggregation, diversity 

and non-linearity. The work on the analysis of heterogeneous-agent systems and their 

emergent behavior will focus on non-linear time-series analysis techniques from chaos 

and dynamical systems theories and multivariate statistical techniques to detect 

emergent states and temporal patterns. The work on the control of heterogeneous-agent 

systems will focus on the bottom-up self-synchronization approach to handling desirable 

and undesirable emergent states of heterogeneous-agent systems for system stability 

and robustness according to Complexity Theory for CAS. 

This project report represents the objectives of the initial one-year effort: 

1) Build and investigate a simulation model of a supply network enterprise - a 

heterogeneous-agent system - under experimental conditions involving various 

inter-agent control methods, internal dynamics, and external changes, and 

2) Develop and apply analytical techniques to the simulation data for 

understanding the emergent system behavior under various conditions and 

gaining insights into system design and control. 

Findings from this effort will provide insights into supply network management (e.g., 

selection and management of suppliers) as well as insights into the emergent behavior of 

heterogeneous-agent systems in general. This effort will also demonstrate the feasibility 

and validity of our simulation modeling approach and analytical methodology for the 

understanding of heterogeneous-agent systems. 

After this one-year effort, we plan to investigate control strategies handling desirable 

and undesirable emergent states of CAS for the performance, stability, and robustness of 

CAS. 



Chapter 1: Complex Adaptive Systems 

Recent efforts have shown that due to the complex, dynamic nature of a supply network, 

it is not enough to model the network as a mere system. More appropriately, a supply network 

-should be modeled as a Complex Adaptive System (CAS) [1]. Therefore, in our experiments, we 

model the supply chain enterprise as a heterogeneous-agent CAS. 

1-1 Complex Adaptive System Theory 

A heterogeneous-agent system is a CAS involving a large collection of semi-autonomous 

agents that may play different roles in the system. Within each agent is a set of states and 

behaviors that can be used to describe the agent. Each agent works independently to increase 

the level of fitness achieved by the agent as well as the surrounding regional or global network of 

which it is a member. Agents within the CAS are allowed measurable degrees of freedom to 

behave in a semi-autonomous fashion. The degree of freedom that is afforded an agent is 

determined by the dimensionality of the CAS. [1] By reducing the dimensionality (through control 

techniques) or increasing the dimensionality by simply allowing the agents a higher degree of 

autonomy, we can decrease or increase the level of stochastic behavior present in the CAS 

respectively. This technique allows us to observe forced behavior under tight control, versus the 

emergent behavior of a less restricted network. 

A key concept in CAS Theory is the connectivity of the agents within the CAS. The 

number of connections within the system, as well as the characteristics (including level of 

communication) of each connection dictates the dynamics of the system's communication 

capabilities. These connections between agents form multiple relationships of varying degrees. 

The interrelations formed by connectivity are indicative of the network's potential to "engage in 

global communication from within" [1]. 

An interactive relationship is present between a CAS and the external environment in 

which it exists [1]. According to Complexity Theory for CAS, the aggregate system behavior of 

heterogeneous agents and their inter-connections emerges from the evolving, local interactions of 

agents in a dynamically changing environment. Therefore, the observed behavior in a CAS is not 



governed by a single entity, but by the simultaneous actions of the agents within the system, as 

well as the co-evolution of both the system itself and its environment [1]. A CAS is thus 

considered a self-organizing entity with observable emergent behavior. 

1-2 Supply Network Enterprise 

A supply network enterprise is a network of organizations coupled for the purpose of 

providing value to a customer. A supply network enterprise consists of a focal organization and 

the network of firms that transact with it in the form of physical goods and services as well as 

information. These connections are then extended iteratively (i.e., connecting the supplier's 

suppliers and customers and the customer's customers and other suppliers). An enterprise 

potentially transcends multiple industries and markets. Agents in a supply network enterprise are 

subject to varying degrees of connectivity with other agents [1]. This structure determines the 

availability of information flow through the network. 

Each organization is an agent acting on its own self-interest, but subject to constraints 

from its contracting relationships with other agents and from the environments. Agents are 

heterogeneous in their role and other features in a supply network enterprise. Complex networks 

of suppliers, manufacturers, distributors, retailers, and customers - an enterprise - are 

commonplace in many industries, including E-Commerce. The complexity of interrelationships 

arises from not only material flows, but also information flows throughout the enterprise. Little 

exists now in understanding the emergent behavior of supply network enterprises, designing their 

structures, and optimizing their operation. 

The theory of Complex Adaptive Systems seems to fit naturally into the description of a 

supply network enterprise. Due to this observation, we model our supply network enterprise as a 

CAS. 



Chapter 2: Modeling a Supply Network Enterprise 

The system  modeling will be based on a coherent integration  of three modeling 

paradigms: agent-based modeling, control-theoretic modeling, and stochastic process modeling 

-as shown in the following figure. This structure applies the comprehensive cohesion of numerous 

current techniques used in modeling supply network enterprises. [2-6] 
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Figure 2-1: Complex adaptive system model of a supply network enterprise. 

Control-theoretic modeling based on control theory will be used to specify the proactive, negative- 

feedback logic of an agent in the controller of the agent for the adaptive, unexpected behavior. 

Stochastic process modeling based on queuing theory and stochastic process theory will be used 

to specify dynamic systems and uncertainties in the environment from which agents gain 

information and on which agents produce impact. 

We use these three functions, which are described, in section 2-2.2 in the following 

sections to describe agent fitness and production calculations: 

gap(i) = production(i) - demand(i) 

customerGap(i) = production(i) - demand(customer) 

endGap(i) = production^) - demand(endCustomer) 



2-1 Agent Design 

Each agent will contain the following elements: role, fitness function, internal model, 

building blocks, dynamic system controlled by the agent, and connectivity with other agents and 

-the environment. At any time, the agent's state can be defined by the state of each of its 

elements. 

2-1.1 Role of Agent 

The role of an agent indicates the type of the agent. An agent's type can be a focal 

organization, supplier, or customer. The agent's role in the system depends on its type. Suppliers 

are measured by their distance from the focal organization, for example, suppliers that supply 

directly to the focal organization are 1 -tier suppliers, their suppliers are 2-tier suppliers, and so on. 

For every supplier, the supplier's customer exists at a tier one level above (numerically lower 

than) the supplier. This structure enables us to observe sub-structures within the network. For 

example, a supplier, along with its immediate suppliers and customer, forms a regional network 

that exists within the global supply network enterprise where the supplier acts as the focal 

organization for the smaller sub-network. 

2-1.2 Fitness Function 

The fitness function describes the objective of the agent, and the relationship of the 

objective measure (e.g., profit), with various factors. These factors include: the state of the 

dynamic system (e.g., the inventory level), the output performance (e.g., number of finished 

orders, delivery time, and product quality) of the dynamic system, the number of lost orders due 

to the inability of the agent to quickly accommodate changes and to attract new orders, etc. The 

agent behaves in a manner as to increase the fitness of the system that the agent belongs to 

locally, regionally and globally. To the extent that fitness criteria are shared, the aggregate group 

of agents tends to act in a collaborative fashion. 

Each agent maintains this metric for its "local" fitness, as well as the "regional fitness" of 

the agent along with its immediate suppliers and customer. The following formulas which we use 

to calculate the fitness levels consider "0" to be optimal fitness. The gap measurement is 



mentioned above, and described in section 2-2.2. The Aproduction is simply the change in 

production from the previous cycle to the current cycle. 

localFitness = \gap\ + \Aproduction\ 

f   r \ 
regionalFitness V localFitness(i) 

V x=l J 

Ir 

r = "number of connected customers and suppliers + 1" 

The fitness function plays an important part in the evolving internal model. An agent can change 

its internal model based on its fitness levels, and the current state of the network. Agents monitor 

their fitness criteria with the use of fitness and gap functions to trigger the bounded control 

adjustment. 

2-1.3 Internal Model 

The internal model describes the reactive and proactive logic that the agent follows to 

determine its behavior. This model acts as the mental model or schema that the agent uses at 

any given moment to interpret its behavior and its external environments, and to generate the 

control inputs to the dynamic systems and the interactions with other agents. Hence, the internal 

model consists of the intra-agent control strategy in the controller and the performance 

assessment method. A part or the entirety of the internal model can be shared among a group of 

agents (e.g., shared norms, values, beliefs, and assumptions that make up the agent's internal 

model) or may be highly individualistic. The internal model is subject to evolution through learning 

and adaptation. 

At any given time, the internal model of the agent can be built up by selecting any 

combination of building blocks associated with that agent. Decisions can then be made based on 

negative (achieving the goal set by the focal organization) and positive feedback (deviation from 

the goal set by the focal organization by having the focal organization accept this new goal). After 

making decisions, an agent can observe the direct effect of the decision on its fitness levels, and 

make adjustments accordingly. 



The agents  in our simulation select rules from the building  blocks based on the 

homogeneity of the network and the level of information sharing between agents. These concepts 

are described in detail in section 2-2.2. 

2-1.4 Building Blocks 

The building blocks are sets of control and adaptation rules, algorithms and strategies 

from which the agent can choose to compose its internal model at any time. These may include 

control-theoretic algorithms, optimization algorithms, genetic algorithms, heuristic rules, and 

performance assessment methods. For example, agents are more cooperative under centralized 

control (top-down command, deterministic planning and re-planning in response to real time 

events, negative feedback control, proactive logic, the focal organization selects suppliers at all 

tiers, sets the unit prices and production levels throughout the supply network, service level, type 

of contract, and resource commitment of each agent). Agents are less cooperative under 

distributed control (bottom-up synchronization, positive feedback control, distributed decision 

making, reactive and adaptive logic, offer and counter-offer, accept or reject, all decisions involve 

only two parties: the upstream agent and the downstream agent). Levels of cooperation apply to 

issues of price, service level, resource commitment, and the selection and management of 

suppliers. 

The building blocks included in our simulation include control strategies for determining 

production levels based on current level of homogeneity and information sharing within the 

network. The control strategies (described below) refer to network types and information sharing 

levels, which are described in section 2-2.2. 

NETWORK 
TYPE 

INFORMATION 
SHARING 

LEVEL 

IF CONDITION: SET PRODUCTION TO: 

homogeneous 
None Igapl > 15 for 3 cycles production - avgGap 
Regional IcustomerGapl > 15 for 3 cycles production - avgCustomerGap 
Global lendGapl > 15 for 3 cycles production - avgEndGap 

semi-hetero & 
heterogeneous 

X={1..30} 
Y={1..6} 

None Igapl > X for Y cycles production - avgGap 
Regional IcustomerGapl > X for Y cycles production - avgCustomerGap 
Global lendGapl > X for Y cycles production - avgEndGap 

Table 2-1 Control strategies to set production level 



2-1.5 Dynamic System 

The dynamic system consists of mainly processes representing orders for finished goods, 

and resources taking processes and producing finished goods. Many firms satisfy orders by 

taking finished goods from the inventory, and then filling up the inventory through production 

using resources. Hence, material flows in the dynamic system may well be represented through 

the inventory level rather than the process flow of orders on resources. Our model of a supply 

network enterprises simplifies the representation of process flows on resources by applying the 

PUSH/PULL method of inventory control where orders are filled using inventory, and inventory is 

then filled using production. The inability to fill an order due to lack of sufficient inventory is 

reflected in the agent's fitness function. 

2-1.6 Connectivity 

The connectivity of the agent with other agents may manifest through material flows, 

information flows (e.g., the sharing of inventory information), and knowledge flows (e.g., the 

sharing of the internal model and/or fitness function). Different types and densities of connectivity 

determine different degrees of inter-agent control. For example, when there exists only material 

flows between a focal organization and one of its suppliers, the degree of inter-agent control is 

low. When there also exists information flows and even knowledge flows, the degree of inter- 

agent control between the focal organization and the supplier is high. 

Agents in our simulation experiments are connected to one customer agent, and multiple 

supplier agents in a tree-like fashion. We present the details of this structure in section 2-2.1. 

2-2 Network Design 

In our experiments, we investigate different types of networks. Each of these networks is 

based on the same physical network structure. The variations introduced in this section represent 

variations on the state of the supply network as opposed to the physical positioning of the agents 

within the network. 
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2-2.1 Physical Structure 

We choose a real supply network enterprise to determine the structure of our simulation 

model. This is a fixed network structure using a supply network with twenty-nine agents. The 

physical structure of the network maintains a hierarchy specified by the focal organization, 

followed by successive tiers of suppliers. During simulation, demand functions (described in 

section 2-2.2) determine the initial customer demand to place on the focal organization. This 

demand then propagates through the network in such a way that the demand placed on a 

supplier agent is equal to the production level of that agent's customer. This demand/production 

relationship is formed iterativeiy from the focal organization down to the farthest supplier tier. 

00 

Figure 2-2 The structure of the supply chain enterprise used in the experiments. 

The state of the network at any given time is defined by the type of the network 

(described in section 2-2.2) in conjunction with the network's fitness levels (described in section 

2-2.3). 

2-2.2 Network Types 

At any given time, the state of the supply network enterprise can be given by its type and 

fitness levels (described in the next section). In this section, we define the type of a network. 

11 



There are four factors used to describe the type of a network. These factors are outlined in the 

following table. 

FACTOR POSSIBLE VALUES 

Homogeneity [homogeneous 1 semi-hetero 1 heterogeneous] 

Level of Autonomy [low 1 high] 

Level of Information Sharing [none 1 regional 1 global] 

Market Condition [stable 1 increasing 1 decreasing 1 volatile 1 seasonal] 

Table 2-2 Factors that describe network types. 

The homogeneity variable determines the extent to which agents within the system act in 

a similar fashion. In a homogeneous network, every agent has identical building blocks that it 

uses to build up its internal model, and each agent has the same initial production level. At the 

semi-hetero level, agents still have the same initial production level, but now have varying 

building blocks. The building blocks we use dictate when an agent will trigger a change in its 

dynamic system, and how much of a change will occur. These building blocks are described in 

Table 2-1. In the homogeneous system, the agents all modify their production values under the 

'same circumstances (if gap>15 for 5 cycles). In a semi-hetero network, the values 15 and 5 are 

replaced by randomly generated values in the ranges {1..30} and {1..6} respectively. The pre- 

determined randomly generated values used in our experiments are shown in the following table. 

AGENT X Y AGENT X Y I AGENT X Y 
OF 6 3 2H 5 3 3D 29 2 
1A 15 4 21 13 3 3E 1 2 
1B 6 5 2J 2 3 3F 4 5 
2A 10 1 2K 13 3 3G 26 3 
2B 8 1 2L 22 4 3H 28 5 
2C 28 3 2M 16 4 31 23 5 
2D 10 2 2N 15 1 4A 2 3 
2E 30 4 3A 1 6 4B 8 3 
2F 3 3 3B 10 2 
2G 25 6 3C 12 6 

Table 2-3 Randomly generated values for heterogeneous network functions. 
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In this and the following table, the name given to an agent includes its level in the network 

structure (number), and the order in which it appears in that level (letter). The X and Y columns 

correspond to the X and Y values of the production functions shown in section 2-1.4. In a 

heterogeneous network, the building blocks remain varied, and each agent now has a unique, 

randomly generated, initial production level in the range {500-1,500} as shown in the table below. 

AGENT PRODUCTION AGENT PRODUCTION AGENT PRODUCTION 
OF 1262 2H 743 3D 1016 
1A 998 21 1350 3E 718 
1B 1377 2J 1230 3F 937 
2A 745 2K 792 3G 1311 
2B 1306 2L 1336 3H 841 
2C 558 2M 1462 31 1063 
2D 703 2N 905 4A 886 
2E 562 3A 1407 4B 503 
2F 1428 3B 540 
2G 960 3C 1039 

Table 2-4 Randomly generated initial production values 

The level of autonomy determines how much freedom is given to individual agents within 

the system to make their own decisions. Under high autonomy, the focal organization sets all the 

production values throughout the network using a production function based on the type of 

network. In low autonomy, each agent uses the production functions to determine its own 

production level, which is also based on the type of network. Therefore, the level of autonomy 

simply determines whether the network is operating under centralized or distributed control. 

The level of information sharing within the network dictates how much a supplier knows 

about its customer. In our simulation experiments, we model the information sharing by giving the 

agents varying levels of access to upstream agents' demands. The three levels of information 

sharing are reflected in the three gap functions mentioned at the beginning of this chapter and 

restated here for convenience: 

13 



INFORMATION 
SHARING 

LEVEL 

IMPLICATIONS RESULTING GAP FUNCTION 

None Agent is only aware of its own 
demand 

production(i) - demand(i) 

Regional Agent is aware of its demand and 
its immediate customers demand 

production® - demand(customer) 

Global Agent is aware of its demand, its 
immediate customers demand, 
and the end customer demand 
imposed on focal organization. 

production® - demand(endCustomer) 

Table 2-5 Result of information sharing on agent knowledge (the gap functions). 

These gap functions are a reflection of the knowledge an agent possesses of its environment. At 

each level, the agent has access to the information available at the level it is currently in, and any 

levels above the current level on the table. However, the agent cannot access information on a 

level in the table that is lower than the level of the network in which the agent belongs. 

The final factor that determines the type of network is the market condition. The market 

conditions determine the value- of the end customer demand, which is imposed on the focal 

organization. There are five functions to describe the five different market conditions. The end 

customer demand is based on a total possible range of {0..2.000} to standardize the experiments. 

The demand functions are listed in the following table. 

MARKET CONDITION DEMAND FUNCTION DEMAND RANGE 

Stable a + e 900..1,100 

Increasing a[l + (t/#Cycles)]+e 900..2.100 

Decreasing a[l-(t/#Cycles)]+e 1.100..0 

Volatile a + E 0..2.000 

Seasonal 1                         2 
if —# Cycles <t< — #Cycles, then - 2a 

else = a 

1,000 or 2,000 

Table 2-6 End customer demand by market. 
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In the table above: 

• 'a'is the initial production for each agent. 

• r is the current cycle [1 .. 100,000]. 

• 'e' is a randomly generated number [ -100 .. 100] 

• '£' is a randomly generated number [-1,000 .. 1,000] 

The output of these demand functions is shown in the following charts. 
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Figure 2-3 Output of customer demand functions. 
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2-2.3 Fitness Metric 

The fitness metrics used for the network have constructs similar to those used for the 

individual agents, described in section 2-1.2. Similar to the individual agent's fitness functions, the 

following fitness functions consider zero optimal. 

f n 

globalFitness ■ ^\endGap(i)\ 
V i=i J 

In 

n = "number of agents in network" 

networkFitness = 
( " ^ V localFitness{i) 
V i=i ) 

In 

Here, the global fitness is a reflection of how well the agents in the network collectively meet the 

needs of the end customer. The network fitness is simply an average of the local fitness's of all 

agents in the network. 

These two fitness metrics are the key to understanding the dynamics of the system as a 

whole. Although it would be beneficial to analyze each agent's local and regional fitness on an 

individual basis, in this project, we limit our analysis to the global and network fitness levels of the 

entire network and leave more in depth analysis to further study. 
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Chapter 3: Design of Simulation Experiments 

We will run a series of simulation experiments that investigate the emergent behavior of a 

supply network enterprise under various conditions of three factors: inter-agent control method, 

-supply network structure, change in internal dynamics and external environment. We will examine 

both the performance aspect and the structural aspect of the emergent behavior of the supply 

network enterprises. The inter-agent control methods will vary from only material flows, to 

material flows and information flows, and finally to material flows, information flows, and 

knowledge flows. For this one-year project effort, our network has a static physical structure. In 

future experiments, the supply network structures will differ in the number of tiers of suppliers for 

a focal organization, number of suppliers in each tier, the involvement (full or partial) of resources 

from a supplier in the supply network enterprise, and so on. Changes in internal dynamics and 

external environment will be set through the rate and type of changes within individual agents and 

from the external market environment. 

In summary, in simulation experiments, we will investigate the following factors: 

1) Inter-agent control methods for different degrees of agent autonomy such as sharing of 

state information among agents, conformance to a common fitness function by agents, 

and enforcement of the same internal model among agents; and 

2) System structures determined by types and density of inter-connections among agents 

through material and information flows. 

The design of these simulation experiments is based on a combination of current design 

techniques in supply networks, complex adaptive systems, multi-agent systems, production- 

distribution models, dynamic networks, self-organizing structures, networks exhibiting emergent 

behavior, distributed control systems, and discrete event systems. [1-10] 

3-1 Initial Setup 

In chapter 2, we defined state variables to describe the simulation system. These 

variables are summarized in the following table. 
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VARIABLE 

TYPE 

VARIABLE POSSIBLE VALUES / IMPLICATIONS 

Independent 

(Network Level) 

homogeneity [homogeneous 1 semi-hetero 1 heterogeneous] 

level of autonomy [low 1 high] 

information sharing [none 1 regional 1 global] 

market condition [stable 1 increasing 1 decreasing 1 volatile 1 seasonal] 

Independent 

(Agent Level) 

Role- [focal 11Tier I 2Tier I ... I nTier] 

Internal Model Defined by current set of building blocks. 

Building Blocks Set of functions based on type of network. 

Connectivity Number of connected suppliers. 

Dependent 

(Network Level) 

customer demand Based on market conditions. 

global fitness Average endGap of all agents in network. 

network fitness Average local fitness of all agents in network. 

Dependent 

(Agent Level) 

production level Based on homogeneity, autonomy, & info sharing. 

local fitness Based on gap. 

regional fitness Average local fitness of all agents in region. 

Table 2-7 Summary of simulation state variables 

Our simulation contains four independent variables. The number of possible values for these 

variables are: three, two, three, and five respectively. This gives us a total of 90 simulation states. 

Throughout the study, we narrow our focus to those states of greatest interest. 

In those experiments where the agents' initial production value is the same 

(homogeneous and semi-hetero networks), we set the initial production to 1,000. Experiments are 

originally run for 1,000 cycles. We do some minor checking of differing cycle times as shown in 

the results in chapter 5. 
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3-2 Running the Experiments 

Each of the simulation sessions processes a set of experiments based on the types of 

networks under investigation.  Each experiment in the set is run for 1,000 cycles.  Some 

-experiments are run for 2,000 and 10,000 cycles to further investigate effects of simulation length. 

Each cycle of a simulation experiment consists of the following five (six) steps: 

1. Calculate end customer demand 

2. Process order through network 

3. Record 3 dependent variable values per agent 

4. Record global fitness and network fitness 

5. Calculate next cycle's production level by agent 

a. If autonomy is low - focal sets production level across network 

b. If autonomy is high - each agent determines own production level 

6. Calculate next cycle's control strategies using adaptive logic for each agent. 

This step is only used in Class 3 simulations (see below). 

Following the completion of an experiment, the network and its agents are reset to their 

respective initial states before the next experiment in the set (or set of experiments) is run. 

To single out specific research aims, we break the testing down into three experiment 

classes. For each class, changes are made to the experiment set up based on observed 

simulation results. Each class removes uninteresting aspects from the previous class, changes 

some aspects to refine results, and adds new aspects to further investigate interesting 

phenomenon. The classes are divided as follows: 

Class 1 - Investigates the effects of market conditions, information sharing, autonomy, 

homogeneity (limited to the homogeneous and semi-hetero levels), and the 

costs associated with changing production levels. 

Class 2 - Investigates the effects of noise present in customer demand functions, length 

of simulation (# of cycles), homogeneity (limited to the semi-hetero and hetero 

levels), and standardizing the change in production costs. 
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Class 3 - Investigates the effects of adding adaptive logic to allow agents the ability to 

adjust their control strategies. 

These experiment classes are further defined in the following three sections. 

3-2.1 Class 1 Experiments 

In this class of experiments, all settings are as described previously. This class is used as 

a basis to determine which factors contribute greatest to the overall fitness of the system. During 

this class of experiments, we limit investigation into the homogeneity of the system to purely 

homogeneous and semi-hetero network types. We also concentrate our efforts on determining 

the magnitude of the market effect on the network performance. Furthermore, we investigate the 

effects of change in production costs factored into the fitness functions. 

3-2.2 Class 2 Experiments 

Because of class 1 analysis, further described in section 5-1, we make the following 

changes in class 2: 

• Remove homogeneous network type 

• Remove volatile market condition 

• Remove change in production cost from local fitness function 

We enhance the investigation of the homogeneity of the network by adding a heterogeneous 

network type to compare with the semi-heterogeneous network. We further investigate the effects 

of market conditions by removing the 'noise' from the demand by market formulas. This is 

accomplished by simply removing the random e and E from the first four market conditions. To 

balance the effect of removing costs of change in production levels, we alter the production 

functions to increase or decrease the production by a factor of ten each time the production 

requires a change. 

Semi-hetero and heterogeneous networks: (X&Yare random) X={1..30} Y={1..6} 

if IworkingGapl > X for Y cycles 

newProduction  =  production  +/-   10This  modification   increases the 

number of cycles needed to catch up production, which "magnifies" the inner workings of the 
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network. These new formulas make better sense for a network with no production costs since 

now production can only change by a pre-selected amount. 

In addition to the above changes, we increase the length of a simulation by running the 

experiments for one, two, and ten thousand cycles. These results are described in section 5-2. 

3-2.3 Class 3 Experiments 

Because of class 2 analyses, further described in section 5-2, we keep all changes 

initiated in class 2. We also eliminate the experimental cycle length of 1,000 cycles for reasons 

given in section 5-3. Further changes in this class investigate the effect of adding adaptive control 

logic within individual agents. This control logic allows an agent to change its internal model by 

altering the control strategies within its current set of building blocks following each cycle 

depending on the following logic: 

If newGap >= oldGap for 5 cycles; decrement X & Y 

If newGap < oldGap for 5 cycles; increment X & Y 

In these formulas, X and Y are from the production logic formulas given in table 2-1 for semi- 

hetero and heterogeneous network types. The gap is determined by the level of information 

sharing as described in table 2-5. This logic tells each agent when to trigger a control change. 

Each time an agent triggers a control change, the X and Y values are either incremented or 

decremented by one accordingly. Further investigation into heterogeneous complex adaptive 

networks would involve allowing varying adaptive logic across the network. This one-year project 

focuses on the effects of all agents sharing the same adaptive logic. 

3-3 Collecting Data 

Following each cycle, the dependant variables associated with the network and the 

individual agents that are updated include all fitness levels, agents' production levels, and agent 

control strategies when triggered. The latter only applies to class 3 experiments. The updating 

occurs in a sequential fashion such that any variables, which rely on other variables, are updated 

following the variables that they rely on as follows: 

•    As order is processed through network, for each agent: 

21 



s   Set gap levels for all three gap functions 

■s   Calculate local fitness for cycle 

•     Following order processing: 

S   For all agents - set regional fitness 

■/   Set global fitness 

S   Set network fitness 

S   Set production level for all agents based on level of autonomy 

S   If class three experiments, set control strategies if logic triggers a change for this 

cycle. 

All data is collected in two formats for use in the two different types of data analysis described in 

chapter 4. 
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Chapter 4: Statistical Data Analysis 

We investigate the non-linear time-series analysis techniques from chaos and dynamical 

systems theories and multivariate statistical analysis techniques, and transform them into the 

-scalable, applicable techniques for analyzing the emergent behavior and temporal patterns of the 

supply network system using the data obtained from the simulation experiments. [7-14] In section 

3-3, we discussed the data collection process for each simulation experiment. This collected data 

is represented in multiple formats that correspond to the desired method of analysis. The two 

main analysis goals for this project include the performance of the system, and detecting 

emergent behavior in the system. 

We investigate how to represent the simulation data from the model of a supply network 

enterprise in a form that is acceptable to these analytical techniques, and how to reform and 

advance these analytical techniques so that they are scalable for real-time data analysis. 

Throughout the analysis process, techniques for analyzing data, as well as techniques for 

appropriately collecting data, a_re refined to enhance the validity and comprehension of each 

metric. 

4-1 Measuring Performance 

Performance is measured through the analysis of inherent patterns within the collected 

simulation data. To analyze the performance of the entire supply network enterprise, we focus our 

attention on the dependent variables: production, global fitness and network fitness. The data 

output from the simulation process is formatted in two ways to enable the import of data into 

graphing software to perform visual observations as well as the ability to import the collected data 

into statistic software for further analysis, including ANOVA analysis and Tukey HSD tests. The 

measure of performance allows the determination of control techniques and network types that 

enhance performance versus those that worsen it. Accurate analysis of the performance of the 

supply network enterprise serves to direct research into the appropriate areas of communication 

and control necessary to improve the performance of the system. 
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4-1.1 Visual Observations 

For visual observations, the data is imported to a graphing software package, where it is 

plotted for analysis. For each experiment, we create production and fitness plots. The production 

charts include the production level of each agent in the network over the cycles in the simulation 

experiment. With these plots, we can visualize the effect of information sharing, homogeneity, 

autonomy, and control functions on the production of the agent system. Global fitness and 

network fitness plotted together for each experiment allow observation of the comparison and 

interaction of these two metrics. Over a set of experiments, we create separate plots for global 

and network fitness. Each chart shows how the respective fitness level varies under differing 

network types and simulation classes. 

Visual observations provide a dual purpose. They allow the confirmation of known or 

suspected system behavior, and therefore give assurance that the simulation software is 

behaving as expected. Furthermore, visual observations are an easy way to detect areas of study 

that are deserving of further attention, as well as those that do not appear to contain any further 

enlightening discoveries. Visual observation is used as a first step in our data analysis for the 

benefit of both of these principles. 

4-1.2 ANOVA Analysis 

An analysis of variance (ANOVA) is used to test for statistically significant differences in 

means. The testing is based on the partitioning of the variances. [10] The results of analysis show 

us the magnitude (F) of the relationships of variables, or differences of means, and the statistical 

significance (p-value) of each result. The p-value of a result is a measure of how significant the 

observed relationship or difference really is. This value is the probability that the observation 

occurred by pure chance. In our study, we only consider observed results significant if the 

corresponding p-value is < .05. ANOVA allows us to determine which of the four factors given in 

table 2-2 contribute greatest to the observed effect on the different fitness levels. 

Because the supply network enterprise is multivariate, we use multi-factor ANOVA to 

produce tabular and graphical comparisons of the effects of the multiple factors on a single 

dependent variable. We use graphs produced from ANOVA results to show the 4-way interaction 
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between factors for both the global and network fitness metrics in chapter 5. Other results show 

us the effects of 2-way and 3-way interactions for more detailed observations of the relationships 

between factors. 

For each of our experiments, the results include the level of each fitness metric for every 

cycle in the experiment. For example, after 1,000 cycles, we have 1,000 local fitness points for 

each agent in the network, 1,000 global fitness points, and 1,000 network fitness points. We 

process the ANOVA analysis for the local fitness of every agent, and the global and network 

fitness metrics. For this phase of the project, we focus on the global and network fitness levels. 

For each of these fitness metrics, we produce a summary of all effects that shows 1-way, 2-way, 

3-way, and 4-way interactions between the four factors for that fitness metric. This summary 

includes the F and p-levels as described above. Next, we create a graph of the 4-way interaction 

to visualize the interaction between factors. Finally, we process Tukey HSD tests (described 

below) for all statistically significant results in the summary table to further analyze the effects of 

the factors and their interaction with each other. 

Results for each experiment are compared with other experiment results within the same 

class to identify important factors and interesting behavior. The results of a class of experiments 

are then compared to another class for identifying behavioral changes that occurred by instituting 

changes to the simulation. This process allows us to refine our simulation and analysis 

techniques. 

4-1.3 Tukey HSD Testing 

A post-hoc comparison of means is given by the Tukey honest significant difference 

(HSD) test. This test allows the grouping of means to see which groups are particularly different 

from each other. The use of post-hoc comparison techniques is preferred over other techniques, 

such as the t-test for independent samples, because they take into account that more than two 

samples were taken. This prevents the possibility of reported probability levels overestimating the 

statistical significance of the mean differences. With the Tukey tests, we can see how the factors 

work together in producing the statistically significant effects observed in the ANOVA testing 
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process. Many of the observations and discussions given in chapter 5 result from analysis of the 

Tukey HSD tests results for each 

The format of the Tukey HSD test allows processing tests with 1-way, 2-way, 3-way, and 

4-way interactions. This way, we can run a Tukey test on any of the observed statistically 

significant interactions found in the ANOVA summary described above. The output is a table with 

rows indicating all possible combinations of factors. These rows are ordered such that the 

combination resulting in the smallest mean is first, and the combination resulting in the largest 

mean is last. Through this format, we can look at a Tukey result and see immediately which 

combination of factors gives the best and worst performance values for the network. Furthermore, 

the Tukey HSD results break up the rows into groups, which have means that are statistically 

similar when compared to the other combinations of factors. With this, it is easy to identify which 

factors contribute the most to a major change in performance level, and which factors only 

contribute to minor performance changes. 

4-2 Detecting Emergent Behavior 

We consider a number of non-|inear time-series analysis techniques such as the delay- 

coordinate embedding technique to reconstruct the phase space from time-series data, estimate 

the dimensionality of the system state via the correlations dimension, and thus detect emergent 

states of the system, as well as multivariate statistical analysis techniques such as clustering and 

classification techniques. [9-14] The importance of detecting emergent behavior is abundant. In 

one case, if the emergent behavior of the network is producing damaging effects to the overall 

performance of the system, control techniques can be applied to drive the network out of the 

emergent state. In another case, if a network is exhibiting emergent behavior that is proving 

beneficial to system performance, alternate control strategies (or perhaps the absence of control), 

can be applied to keep the system in the emergent state. Furthermore, in a proactive way, if we 

can find the combinations of factors that drive a network into an emergent state, we can either 

prevent or encourage this combination of factors depending on whether the emergent state is 

considered good or bad for the network. 
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4-2.1 Visual Observations 

As with the performance measurement techniques, we begin by making visual 

observations in an attempt to detect emergent behavior in the system. These observations assure 

us that our simulation is behaving as expected and that the data collected from the system is 

adequate to subject to more complex emergent behavior analysis techniques. To detect the 

presence of emergent behavior, we plot the production levels of each agent over the course of a 

simulation and compare the series. If the agents' production levels appear sporadic and 

undeterminable, we predict that the simulation will not exhibit emergent behavior. However, if the 

agents' production levels seem to converge at any point, we guess that the simulation will not 

exhibit emergent behavior. With the knowledge gained from these visual observations, we can 

continue our study into the emergent behavior of the network through more sophisticated 

techniques. 

We observe the output of each experiment with respect to global and network fitness. In 

the cases where the output appears chaotic, we determine that chaotic time series analysis is 

appropriate. 

4-2.2 Chaotic Time Series Analysis 

Chaotic time series analysis is used to detect emergent behavior in a system by 

identifying the deterministic origin of a time series with chaotic underlying dynamics. By 

estimating the dimensionality of the stochastic process, it is possible to detect a chaotic time 

series in the output of the process. In chaotic time series analysis, delay coordinates are 

commonly used to reconstruct an image of a dynamic system. [11] The correlation dimension (D2) 

of the image of an attractor in the original dynamic system can be estimated by a technique 

presented in [11-14] which uses the embedding dimension and delay time coordinates to 

estimate D2. This technique applies the selection of appropriate values for the embedding 

dimension and delay time to the Grassberger-Procaccia algorithm. 

This algorithm evaluates D2 using the probability that a randomly chosen pair of points 

will be separated by a distance less than e on the attractor [11-14] 
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For our application, we designate the correlation sum as CN(e,x,m). [11] Where x is a constant 

time-delay selected by observing a graph of the stochastic process output, and m is a variable 

representing the embedding dimension. We plot the slope of the linear portion of D2 over 

increasing values of m to detect emergent behavior within the supply network enterprise. If 

emergent behavior exists in the network, then for some dimension m, the slope of D2 is the same 

for all x > m. Typically, the slope of D2 increases with m until this plateau is reached. [11] 

In detecting emergent behavior, we run this algorithm on the global fitness and network 

fitness outputs of each simulation experiment that exhibits chaotic time series output as observed 

in the visual observations of 4-2.1. 
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Chapter 5: Results and Discussion 

The  results  presented  here  are  separated  by experiment class.  The  classes  of 

experiments are described in section 3-2. These classes allow us to single out specific areas of 

"interest for differing research aims. Within each sub-section of this chapter, we describe results 

relating to key areas of investigation for that class, changes made to the simulation model from 

previous classes, and results that may warrant changes in future classes. 

5-1 Class 1 Experiments 

Our initial set of experiments show that the effect of a volatile market is highly significant. 

The volatile market shows significantly worse performance levels than the other four markets 

(stable, increasing, decreasing, and seasonal) for both global and network fitness. For the global 

fitness, market level is the only significant factor. We determine that fitness is driven by the 

market due to a cancellation effect (when one tier has poor fitness, another has good fitness). 

For network fitness, all four factors are significant. The significant factors, when analyzed 

unaccompanied (1-way interaction), which result in the best performance are homogeneous; low 

autonomy; and global information sharing. We observe that a homogeneous, high autonomy 

network with global information sharing can achieve the same effects as a homogeneous, low 

autonomy network. Furthermore, a semi-hetero, high autonomy network achieves best fitness 

when each agent reacts only to its immediate customer (no information sharing). Another 

significant observation is that increasing the level of information sharing among autonomous 

agents improves network fitness in homogeneous networks, and worsens it in semi-hetero 

networks. 

In the graphs that follow, the first four pairs of graphs represent global fitness, and the 

next four pairs represent network fitness. The pairs represent autonomy (low and high), and there 

is one pair for each of four market conditions (stable, increasing, decreasing, and volatile). The y- 

axis of each graph is fitness level, and the x-axis is the information sharing level (none, regional, 

global). The lines represent the homogeneity of the network (homogeneous and semi-hetero). 
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Figure 2-4 Global and network fitness in class 1 experiments. 
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Observe that for each market condition, the underlying patterns of variable interaction are similar, 

however, the values of the fitness levels are significantly higher (worse) in the volatile market. 

The graphs also clearly identify the cross-relationship between homogeneity and information 

sharing. Chaotic time-series analysis shows that this network is a purely stochastic system 

exhibiting no emergent behavior. 

In the seasonal market, for global fitness all factors except homogeneity are significant. 

The best significant 1 -way factors are seasonal and low autonomy. In the network fitness, all 

factors are significant. The best significant 1-way factors are seasonal, homogeneous and low 

autonomy. Information sharing improves both fitness measures in the seasonal market for 

homogeneous and semi-hetero autonomous networks. 
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Figure 2-5 Global fitness is a seasonal market. 

For all simulations, low autonomy provides better performance overall. The seasonal market with 

its absence of noise provides the best fitness levels. Observe also that the cross-interaction 

between homogeneity and information sharing does not exist without the noise present in other 

market conditions. 

Recalling that our fitness levels take into account the agent's ability to meet customer 

demands, as well as the cost of changing fitness levels, we investigate the effect these costs 

have on the overall fitness. 
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Figure 2-6 Effects of production costs on the fitness levels. 

As shown in this chart, the effect of calculating the change in production costs into the fitness 

metric does not have a significant effect on the overall performance of the network. 

5-2 Class 2 Experiments 

The experiments in this class follow the changes to the model outlined in 3-2.2. The results of 

these modifications are as follows: 

• Global Fitness 

o    Increased information sharing improves fitness in an autonomous network, 

o    Best significant 1-way: low autonomy; global info sharing 

• Network Fitness 
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o    Fitness worsens or stays the same with increased information sharing in an 

autonomous network. 

o    Best significant 1-way: low autonomy; no info sharing 

•    Both fitness measures 

o    All factors are significant. 

o Seasonal market shows the worst performance levels. 

In the graphs that follow, the first set of four graphs is global fitness and the second set is network 

fitness. In this example, we only look at the purely heterogeneous network to compare with semi- 

hetero graphs from the previous class of experiments. Therefore, the lines on the graphs now 

represent low and high autonomy so that we can measure the significance of this factor. The 

remaining parts of the graphs remain the same as the last set. 
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Figure 2-7 Global and network fitness in class 2 experiments. 

From these graphs, we can see the significant effect of the changes outlined in section 3-2.2. 

In further experiments, we ran the simulation for 2,000 and 10,000 cycles. As the number of 
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cycles increased, we find that the overall fitness levels improve (with very small changes 

between 1,000 and 2,000 and larger changes between 2,000 and 10,000). However, the 

overall Interaction between the factors remains the same. Additionally, the negative effect of 

information sharing on network fitness is decreased (positive in some markets) at 10,000 

cycles. 

With the removal of noise from the demand functions, we find that the output of our 

simulation experiments no longer has an underlying stochastic structure, which nullifies the 

need for detecting emergent behavior. We continue our in depth study into the workings of 

the supply network enterprise to complete this one-year effort with the aim to refine our model 

before reverting back to a more complex customer demand market. We save the further 

research into the analysis and control of emergent behavior to future study, and continue 

investigating our model. 

5-3 Class 3 Experiments 

In order to witness the effects of adding adaptive logic to the agents, we run the 

simulations for 2,000 cycles. As observed in class 2 experiments, this will not degrade our result 

comparisons with the other classes. The charts showing the global and network fitness of this 

class are set up in the same way as the class 2 experiment charts. As with the class 2 

experiments, all factors are significant for both global and network fitness measures. 
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Figure 2-8 Global and network fitness in class 3 experiments. 

We observe from these charts, that the overall pattern of variable interaction remains the same as 

in class 2 experiments, with the exception of the network fitness in a seasonal market. However, 

the level of fitness is significantly lower (better) in all cases. This follows from the scale along the 

y-axis. The interesting observation here is that the changes made in class three simulations have 

a significant positive impact on the network fitness level in a seasonal market with high autonomy, 

and global information sharing. 
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Chapter 6: Conclusions 

In this project, we have shown a method for designing a model of a supply network 

enterprise. With this model, we use our simulation method to analyze the behavior of the supply 

-network enterprise. Our analysis techniques prove creditable as shown in the simulation results of 

chapter 5. This one-year project has culminated in the design and implementation of a simulation 

model, the refinement of the model through simulation processing, the application of analysis 

techniques to understand the simulation results, and the resulting observations of a complex, 

dynamic supply network enterprise. To summarize our results, we discovered the following: 

■S   Volatile markets have the most negative impact on the system performance. 

s   Low autonomy has the most positive impact overall on the system performance. 

S   A homogeneous, high autonomy network with global information sharing can achieve the 

same performance as a homogeneous, low autonomy network. 

■s   Noise present in customer demand creates a cross-relationship between homogeneity 

and the level of information sharing. 

S   Performance  does  not  always  improve  with  increased  information  sharing  in  an 

autonomous network. 

S   With adaptive logic, agents can improve their fitness levels, thereby improving the 

performance of the entire system. 

These observations provide a basis for observing the effects of our simulation model in chaotic 

environments. 
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